Almost Sure Convergence of Products of 2× 2 Nonnegative Matrices
نویسنده
چکیده
Abstract. We study the almost sure convergence of the normalized columns in an infinite product of nonnegative matrices, and the almost sure rank one property of its limit points. Given a probability on the set of 2 × 2 nonnegative matrices, with finite support A = {A(0), . . . , A(s − 1)}, and assuming that at least one of the A(k) is not diagonal, the normalized columns of the product matrix Pn = A(ω1) . . . A(ωn) converge almost surely (for the product probability) with an exponential rate of convergence if and only if the Lyapunov exponents are almost surely distinct. If this condition is satisfied, given a nonnegative column vector V the column vector PnV ‖PnV ‖ also converges almost surely with an exponential rate of convergence. On the other hand if
منابع مشابه
THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.
متن کاملON THE ALMOSTLY SURE CONVERGENCE OF THE SEQUENCE D_P,Q
In this paper, we will discuss the concept of almost sure convergence for specic groups of fuzzyrandom variables. For this purpose, we use the type of generalized Chebyshev inequalities.Moreover, we show the concept of almost sure convergence of weighted average pairwise NQDof fuzzy random variables.
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملConvergence and Stability of Modified Random SP-Iteration for A Generalized Asymptotically Quasi-Nonexpansive Mappings
The purpose of this paper is to study the convergence and the almost sure T-stability of the modied SP-type random iterative algorithm in a separable Banach spaces. The Bochner in-tegrability of andom xed points of this kind of random operators, the convergence and the almost sure T-stability for this kind of generalized asymptotically quasi-nonexpansive random mappings are obtained. Our result...
متن کامل